Struja na Sunce

Danas solarni paneli koriste nekih 20% primljene toplote, dok kod direktnog zagrevanja vode koeficijent ide i do 80%.
solar3
Novo!
Close
Sačuvajte članke sa nalogom

Nakon što se prijavite preko Cafe Sandžak, možete sačuvati priče i lako ih pregledavati kasnije na bilo kojem uređaju.

Ovaj članak može da se sluša Poslušajte tekst koji slijedi u nastavku

Uz nedavno doneti Zakon o korišćenju obnovljivih izvora energije, solarna elektrana na krovu vaše kuće postaje sasvim realna mogućnost. Kako ovakvi sistemi rade, koliko su efikasni, kako da ih konfigurišete, koliko sve to košta i kada će se investicija isplatiti? Krenuli smo u istraživanje…

Najveći deo energije našoj planeti obezbeđuje obližnja zvezda – Sunce. To je usijana gasovita kugla prečnika 1.39 miliona kilometara. Temperatura na površini Sunca iznosi oko 5780 kelvina, a u središtu čak 15.7 miliona kelvina. Sunčevo jezgro je termonuklearni reaktor gigantskih razmera. U njemu se svakog sekunda oko 600 miliona tona vodonika pretvori u 596 miliona tona helijuma. „Nedostajućih“ 4 miliona tona materije pretvara se u energiju po čuvenoj Ajnštajnovoj formuli E=mc2, dakle svakog sekunda se u svemir pošalje 3.86×1026 W u vidu elektromagnetnih talasa, čiji spektar odgovara zračenju crnog tela na temperaturi od oko 5780 K.

Energija se širi na sve strane pa Zemlja, koja je udaljena oko 149.6 miliona kilometara, primi tek delić toga, reda 1.74×1017 W. Kada treba računati približno, može se smatrati da svaki kvadratni metar Zemljine površine, ako nema oblaka, primi 1 kW. Dakle, na krov površine 50 m2 za šest toplih sati letnjeg dana „padne“ oko 288 kW snage, što ugrubo predstavlja 10 puta više energije nego što prosečno domaćinstvo potroši struje za čitav dan (nekih 30 kWh). Ako je oblačno, krov će za isto vreme primiti samo 28 kW – kad bi se sve to pretvorilo u električnu energiju i kada bi bilo racionalnog načina da se višak negde akumulira kako bismo imali struje i noću, ne bismo morali ni da razmišljamo o priključku na javnu električnu mrežu.

Javna električna mreža je ipak neophodna jer godina ima i zimsko doba, sa kraćim danima, mnogo oblaka i hladnoćama koje zahtevaju utrošak energije za grejanje. Idealno bi bilo da u javnu mrežu deponujemo struju koju proizvode naši solarni paneli kada je imamo u višku, a da trošimo struju iz mreže kada naše potrebe prevazilaze mogućnost proizvodnje. Upravo to treba da omoguće novi propisi o upotrebi solarnih elektrana, o kojima ćemo kasnije govoriti. Za sada se bavimo pitanjem od koga sve počinje – kako „zarobiti“ sunčevu energiju i pretvoriti je u električnu… ili možda neku drugu.

Sunce i topla voda

Sunčeva energija koja stiže do Zemlje predstavlja elektromagnetno zračenje koje, osim vidljivog dela spektra, sadrži ultraljubičaste i infracrvene komponente pa se može pretvoriti u razne forme energije: toplotnu, hemijsku, mehaničku, električnu… Najjednostavnije je pretvarati je u toplotnu energiju, pa je to i bila prva primena solarnih panela koje je još 1883. godine osmislio američki pronalazač Charles Fritz, oslanjajući se na istraživanja koja je 1839. objavio francuski naučnik Edmond Becquerel, kao i na ideji da se selenijum koristi kao foto konduktor koju je 1873. formulisao Willoughby Smith (današnji solarni paneli koriste silicijum a ne selenijum, ali je princip isti).

Tokom sedamdesetih i osamdesetih godina XX veka, motivisano energetskom krizom, počela je masovnija ugradnja solarnih panela, pri čemu se energija dobijena iz njih koristila za zagrevanje vode. Proizvodnja električne energije iz solarne je koncepcijski bila moguća, ali je potrebna oprema bila preskupa. Razmišljalo se i o pretvaranju sunčeve energije u hemijska goriva, to jest materijale koji bi direktno zamenili naftu i ugalj, ali se sa time nije daleko stiglo. No grejanje je dobro funkcionisalo.

Nećemo se ovde baviti detaljima takvih sistema, samo ćemo ukratko reći da prijemna ploča na krovu (absorber), izložena sunčevoj svetlosti, upija toplotu koju onda predaje radnom fluidu koji je vodi u toplotno skladište. Fluid je uglavnom obična voda (zovemo je i sanitarna voda) pomešana sa antifrizom, a može da bude i vazduh. Topla voda se sprovodi do bojlera, prirodnim tokom ili (češće) korišćenjem pumpe, gde cirkuliše oko kotla i greje vodu u njemu. Dakle, prikupljenu energiju kolektor ne predaje bojleru direktno, već preko izmenjivača toplote, pa taj zatvoreni sistem omogućava da se kao radni fluid koristi tečnost koja se ne mrzne, što proširuje sezonu rada sistema i na najhladnije dane.
Danas gotovo svaki veći bojler za centralno grejanje vode ima mogućnost korišćenja sunčeve energije kao alternative električnim grejačima.
Idealni panel, pozicioniran tako da generiše maksimalnu energiju, za našu geografsku širinu je okrenut ka jugu i postavljen pod uglom od 35 stepeni.

Još je zanimljivija mogućnost da se leti toplota „uskladišti“ u nekakav solarni tank i da se onda zimi koristi za grejanje prostorija. To već zahteva pripremu kod gradnje objekta, recimo da se ispod temelja ugradi više desetina tona kamena, propisno izolovanog i zaptivenog, kroz koga prolaze cevi sa toplom vodom. Druga, značajno bolja mogućnost je da se za skladištenje toplote koristi voda, odnosno da se ispod objekta izgrade bazeni, koji će se leti i tokom toplog dela zimskog dana grejati, a onda će u hladnijim vremenima tu toplotu vraćati kroz podno ili etažno grejanje objekta. Grubi proračun kaže da u 1 m3 vode možemo da uskladištimo 1,15 kWh toplotne energije.

Poslednjih decenija tehnologija napreduje, pa je moguće racionalno pretvaranje solarne energije u električnu. Prvi upotrebljivi foto naponski uređaji su se pojavili pedesetih godina prošlog veka, kada su spremani za svemirske brodove. Ćelije su bile hiljadama puta skuplje nego što su danas, ali stvari su krenule u dobrom smeru.

Vremenom efikasnost raste a cene padaju, pa su solarne ćelije počele da se javljaju i u kalkulatorima, ručnim satovima i drugim manjim uređajima. U ovom veku foto naponska industrija raste od 15% do 40% godišnje, proizvodnja se seli u Kinu što dalje snižava cene, i tako početkom prethodne decenije počinje nova era gradnje solarnih elektrana, potpomognutih državnim subvencijama.

Danas solarni paneli koriste nekih 20% primljene toplote, dok kod direktnog zagrevanja vode koeficijent ide i do 80%. Ali struja je praktičnija – možemo je koristiti ne samo za grejanje, nego i za hlađenje, osvetljenje, pokretanje uređaje i sve ostalo što nam padne na pamet. Zato ćemo se takvom konverzijom baviti u ovom tekstu.

Polazimo sa vrha

Obično se kaže da se kuća neće zidati od krova nego od temelja, ali priča o solarnoj elektrani počinje od krova. Dobra vest je da se, suprotno raširenim verovanjima, gotovo svaki krov može koristiti za solarnu elektranu. Neće se, doduše, uvek dobiti isti rezultati. Idealni panel, pozicioniran tako da generiše maksimalnu energiju, za našu geografsku širinu je okrenut ka jugu i postavljen pod uglom od 35 stepeni. Ako je ugao manji, panel će u pikovima proizvoditi manje energije, ali je zvonasta kriva (sa nižim temenom) nešto šira. Površina ispod te zvonaste krive je manja, dakle proizvodimo manje energije, ali nam može više odgovarati da u dužem periodu proizvodimo manje, nego da u piku, kada je Sunce u zenitu, proizvodimo mnogo više, a kasnije da proizvodnja padne.

Kada je panel horizontalan (ravan krov), proizvodnja energije na godišnjem nivou je za oko 15% manja nego kod idealnog krova; razlika očito nije prevelika. Zato i kažemo da će velika većina krovova davati solidnu energiju, ali je pitanje da li će se investicija vratiti za 6 ili za 9 godina. Što se strana sveta tiče, jug je najbolji, ali se dobri rezultati dobijaju i postavljanjem panela u orijentaciji istok‑zapad, naročito na industrijskim pogonima koje često karakterišu ravni krovovi.

Solarni panel je niz od 60 ili 72 redno vezanih PN spojeva; u novije vreme se koriste i paneli sa 120 ili 144 polućelije. Dobro osvetljen PN spoj daje napon od oko 0.7 volti – jako uprošćeno rečeno, „krademo“ elektrone pozitivno polarisanom PN spoju, što on nadoknađuje pod dejstvom svetla.

Monokristalni ili polikristalni?

Postoji nekoliko tipova panela, ali su najčešće u upotrebi monokristalni i polikristalni silicijumski paneli. Monokristalni paneli su izrađeni od jednog kristala silicijuma, pa je njihova efikasnost veća, ali su oni zbog toga skuplji. Prepoznaćete ih po crnoj boji. Polikristalni paneli imaju ćelije izrađene od više kristala, plave su boje i nešto niže efikasnosti. Postoje i thin‑film paneli, znatno jeftiniji i znatno manje efikasni, ali oni polako izlaze iz upotrebe.

Monokristalni paneli su izrađeni od jednog kristala silicijuma, pa je njihova efikasnost veća, ali su oni skuplji.
Monokristalni paneli imaju smisla ako je prostor ograničen, a elektrana se nalazi u području koje karakteriše veća oblačnost i povremena magla, pošto oni bolje rade pri difuznom svetlu. Smatra se da su za naše područje najpogodniji monokristalni PERC (Passivated Emitter and Rear Cell) paneli. Ako imate više prostora i povoljniju klimu, polikristalni paneli su pogodniji jer su manje osetljivi na visoke temperature, a i cena je niža.

Paneli se lako montiraju na krov, s tim što treba uzeti u obzir njihovu masu. Panel od 60 ćelija koji se obično koristi za kućnu solarnu elektranu teži između 18 i 20 kilograma, dok veći paneli (72 ćelije) teže 20‑25 kilograma. Panelima nije potrebno previše održavanja – kiša je odlično prirodno sredstvo za pranje, pa će takvo „prirodno čišćenje“ biti uglavnom dovoljno čim je ugao panela preko 10 stepeni. Nešto veći problem pravi lišće koje pada po krovu, jer senke koje takve prepreke neminovno prave mogu da izazovu tehničke probleme koji su nekada čak i oštećivali panele – niz ćelija izloženih suncu može da „spali“ zamračenu ćeliju. Danas se u panele ugrađuju zaštitne diode koje rešavaju taj problem, ali je ipak uobičajeno da se par puta godišnje paneli ručno očiste i ujedno provere.

Potrebno je oko 8 godina da se sistem otplati. Verovatno i manje, pošto će cena električne energije neminovno rasti.

Solarni paneli vremenom degradiraju – smatra se da gube nekih 0.5% kapaciteta godišnje. Obično se deklarišu na 25 godina, pa neki proizvođači daju toliku garanciju, dok drugi daju 25 godina garancije na performanse (tvrde da će degradacija biti manja od deklarisane). Zato bi se moglo reći da je vek panela 30 pa i više godina, ali je u takve tvrdnje teško biti siguran jer nema panela koji su toliko dugo u upotrebi. Najzad, materijali napreduju, pa ćete možda želeti da promenite panele i pre nego što im istekne radni vek, ako su novi uređaji znatno efikasniji.

Polikristalni paneli imaju ćelije izrađene od više kristala. Nešto su niže efikasnosti od monokristalnih, ali su jeftiniji i manje osetljivi na visoke temperature

„Žetva“ struje

Svaki od panela kao izlaz daje jednosmernu struju, koja treba negde prikupiti i transformisati u naizmeničnu struju napona 220 volti i frekvencije 50 Hz. U najjednostavnijem slučaju paneli su vezani na red (koristi se izraz string) a kabl od njih vodi do invertera.

U inverteru se stringovi iz raznih nizova panela analiziraju i transformišu tako da se dobije maksimalna moguća snaga. Proces se zove Maximum Power Point Tracking, skraćeno MPPT. Kasnije će u inverteru ta jednosmerna struja biti pretvorena u naizmeničnu.

U složenijem slučaju uz svaki panel montiran je optimizator, mali elektronski uređaj koji izlaz iz panela pretvara u jednosmernu struju fiksne jačine, uz maksimalan napon koji se u datim uslovima može postići – MPPT se obavlja na tom uređaju. Ta jednosmerna struja se prosleđuje inverteru, koji je pretvara u naizmeničnu. Ponekad se za manje sisteme koristi i treća topografija, gde svaki panel ima sopstveni mikroinverter sa MPP tracking‑om, pa se već tu dobija naizmenična struja, a inverter nije ni potreban, mada neki sistem za regulaciju i upravljanje svakako jeste.

Sve ove komponente imaju značaj i za zaštitu panela. Generalno, panel je „najsrećniji“ kada radi i isporučuje struju. Ako se struja u nekom trenutku ne isporučuje, obično zato što potrošaču nije potrebna a nema mogućnost njenog slanja u javnu mrežu, panel će se isključiti ali će sunčevi zraci i dalje padati na njega, pa će on biti sve topliji, što mu skraćuje radni vek. Takođe, proizvodnja struje je manja ako je temperatura panela veća – za svaki celzijusov stepen rasta temperature panela, njegova efikasnost opada za oko 0.3%. To je još jedan razlog zbog koga je potrebno automatsko upravljanje čitavim sistemom.

Inverter na vezi sa cloud-om

Inverter je uređaj koji jednosmernu struju različitog napona transformiše u naizmeničnu struju konstantnog napona od, u našem slučaju, 220 – 230 V i frekvencije 50 Hz. Inverter je otporan na vremenske prilike (sertifikovan je do nivoa IP65) što znači da mu kiša neće smetati, ali je ipak bolje da ga stavimo na neko suvo mesto: u garažu, podrum ili potkrovlje. Do njega se dovode kablovi iz stringova solarnih panela. Na izlazu invertera može da bude monofazna ili trofazna struja. Obično se monofazni inverteri koriste za sisteme snage ispod 7 kW, dok trofazni kreću od 3 kW; ako vaša elektrana proizvodi između 3 i 7 kW, izabraćete uređaj prema tome kako želite da koristite dobijenu energiju.
U solarnoj elektrani inverter ima i niz kontrolnih funkcija, pa treba da obezbedi optimalnu proizvodnju električne energije, kontrolu tog procesa ali i njegov trenutni prekid ukoliko nastupe neki neregularni uslovi. Uz to, inverter je povezan na Internet pa šalje izveštaj o postignutoj proizvodnji u cloud, a korisniku omogućava daljinsko upravljanje i optimizaciju sistema.

U svakom trenutku možete pratiti proizvodnju struje kao i ukupne uštede

Za tip invertera se opredeljujete na osnovu planiranog scenarija primene elektrane. Ukoliko ona predstavlja „svet za sebe“ i napaja neke konkretne potrošače (recimo, sisteme koji rudare kriptovalute), dakle nije vezana na javnu električnu mrežu, stvari su prilično jednostavne i takav sistem zovemo odvojenim sistemom ili koristimo izraz islanding (od island – ostrvo).

Sledeća mogućnost je da elektrana, kada ima viška energije, puni baterije koje će se onda u noćnim satima koristiti za napajanje potrošača. Zatim imamo takozvani grid inverter, koji radi samo u prisustvu mrežnog napona i, kao izvor naizmenične struje, „upumpava“ struju u mrežu kao sinhroni generator. Hibridni inverteri mogu da napajaju potrošače u kući i višak energije deponuju u javnu elektroenergetsku mrežu, što je neki opšti slučaj koji će se najčešće realizovati.

Čim postoji veza sa javnom mrežom, inverter mora da zadovolji neke prilično stroge uslove. Recimo, šta se dešava ako u mreži nestane struje? Sigurno ne biste želeli da napajate potrošače u komšiluku, a radnici u trafo‑stanici koji su isključili prekidač da bi obavili neku servisnu intervenciju još manje žele da ih „udari struja“ koja stiže sa strane potrošača. Tu je pre svega tzv. anti‑islanding zaštita, koja će u slučaju nestanka struje u nekom jako kratkom roku (recimo 2 sekunda) isključiti solarnu elektranu sa mreže.

Sve u svemu, inverter je inteligentni uređaj povezan ne samo na elektroenergetsku mrežu nego i na Internet, preko koga se njime upravlja. Potrebno je pažljivo konfigurisanje ovog uređaja, a kasnije i praćenje rada da bi se proizvodnja energije optimizovala a eventualni problemi što pre otklonili.

Šta sa strujom?

Ubedljivo najjednostavnije i najefektnije, mada nažalost ne i legalno, rešenje je da izlaz iz invertera ubodete u bilo koji jednofazni ili trofazni utikač u kući. I to je bukvalno sve – potrošači će se, kad proizvodite struju, napajati od nje, kada nema dovoljno proizvedene struje ostatak će se „uvoziti“ iz javnog elektroenergetskog sistema, a kada proizvodite više struje nego što trošite, višak će se slati u elektroenergetski sistem.
Inverter obezbeđuje optimalnu proizvodnju električne energije, kontroliše proces, pa ga po potrebi i prekida ukoliko nastupe neregularni uslovi. Izveštaje o radu on deponuje u cloud

Kako se to reflektuje na vašem strujomeru? Zavisi od konkretnog brojila. Neka stara, mehanička brojila će raditi upravo onako kako biste (nelegalno) želeli, dakle vrteće se unapred kad trošite struju, a unazad kada šaljete struju u sistem. Na kraju meseca, kod očitavanja, videće se bilans, pa ćete ako je taj bilans u vašu korist, upasti u prilične nevolje zato što je brojilo pokazalo „negativnu potrošnju“. Novija digitalna brojila neće da broje unazad, pa će se na kraju meseca videti samo koliko ste struje potrošili, a neće se znati koliko ste poslali u sistem.
Najzad, u preporučljivom scenariju, gde ste sistem legalno projektovali, instalirali i atestirali, dobićete moderno digitalno brojilo koje posebno registruje potrošenu struju a posebno ono što ste vratili u sistem. Nakon očitavanja platićete razliku, s tim što cene u jednom i drugom smeru ne moraju biti jednake. Komercijalni uslovi zavise od snabdevača sa kojim ste se dogovorili, ali i od državnih subvencija i čitavog niza drugih parametara. Generalno se pojavljuju dva scenarija – net metering i net billing.

Net Metering vs. Net Billing

U najjednostavnijem net metering scenariju primenjuje se „robna razmena“, kilovat čas za kilovat čas. Ako ste u nekim periodima dana imali višak električne energije koju ste poslali u mrežu, brojilo registruje koliko ste kilovat časova deponovali i kasnije, recimo noću, tu energiju preuzimate iz mreže i ne plaćate je.

Što je još lepše, vaš saldo se čuva tokom čitave godine, pa tokom sunčanih letnjih dana možete da deponujete energiju koju ćete koristiti naredne zime, kada je vaša proizvodnja znatno manja, a kući je potrebno više energije, pre svega za grejanje. Obično se račun jednom godišnje anulira, recimo 1. maja, i tada merenje ponovo počinje.

Net billing u priču uvodi novac. Elektroenergetski sistem kupuje od vas energiju, i plaća je prema cenama koje ne moraju biti fiksne, već se menjaju u zavisnosti od doba dana i drugih parametara. Mogu postojati i državne subvencije koje podrazumevaju da kilovat čas „čiste“ energije vredi više od kilovat časa koji dobijate iz termoelektrane koja troši neobnovljive resurse i oslobađa CO2. Konkretni uslovi zavisiće od ugovora koji sklopite sa isporučiocem.

Danas solarni paneli koriste nekih 20% primljene toplote, dok kod direktnog zagrevanja vode koeficijent ide i do 80%. Ali struja je praktičnija…

Za početak će verovatno manji proizvođači biti upućeni na net metering u kombinaciji sa garantovanim snabdevanjem, dakle na EPS, dok će veći proizvođači energije sklapati ugovore sa drugim isporučiocima, trudeći se da ostvare što povoljnije uslove.

Uslovi će se verovatno menjati iz godine u godinu, u zavisnosti od situacije na tržištu, a biće i nekih hibridnih net metering + net billing scenarija.

Projekat i dozvole

Srbija je nedavno dobila novi Zakon o korišćenju obnovljivih izvora energije koji treba da reguliše i korišćenje solarnih elektrana. Iako podzakonski akti u trenutku pisanja ovog teksta još nisu doneti, pa ni konkretne procedure nisu precizno definisane, verujemo da će proces izgradnje elektrane teći u nekoliko faza. Za početak se dobijaju uslovi za projektovanje elektrane, a zatim ovlašćena firma priprema projekat i predaje ga organu lokalne samouprave (opštini) koja daje odobrenje za izgradnju. Po svemu sudeći, neće biti potrebe za klasičnom građevinskom dozvolom.

Pošto elektrana bude postavljena, aplicira se za upotrebnu dozvolu, koja podrazumeva kontrolu čitave instalacije i njene tehničke spremnosti. Kada je upotreba odobrena, vlasnik objekta sklapa ugovor sa snabdevačem o kupovini struje i predaji viška energije u mrežu. Tada se definišu svi detalji o uslovima, cenama, načinu i rokovima plaćanja… Najavljeno je da će to biti jednostavan, tipski ugovor, naročito kada se radi o malim elektranama, recimo snage do 10 kWp (kilovata u piku). Sa nestrpljenjem očekujemo podzakonske akte koji će razjasniti mnoge dileme.

Da li se isplati?

Pokušaćemo sada da čitavu ovu teoriju sažmemo u konkretan primer – koliko bi koštao prosečan kućni sistem koji koristi sunčevu energiju, koliko bi struje proizvodio i koliko bi vremena bilo potrebno da se investicija otplati? Recimo da raspolažemo krovom površine 60 m2, dimenzija 10×6 metara, koji je pokriven crepom. Krov je orijentisan prema jugozapadu (32° od smera juga prema zapadu) i kos je, pod uglom od 24°.

Na ovakav krov može da se postavi 20 panela instalirane snage 6.6 kWp (kilovata u piku). Za samo postavljanje je potreban aluminijumski sistem koji se ugrađuje ispod crepa i obezbeđuje vezu za noseće aluminijumske profile, u koje se pričvršćuju solarni paneli. Kablovi vode jednosmernu struju od solarnih panela do mesta gde se nalazi inverter, koji se priključuje na kućnu instalaciju u razvodnom ormaru.
Za sada nije poznato koliko će koštati razne administrativne takse za odobrenje projekta i davanje upotrebne dozvole, pošto još ne postoje podzakonski akti, ali se može reći da je budžetska cena opisanog sistema – dakle, projektovanje, oprema i instalacija – približno 5500 evra u dinarskoj protivvrednosti.

Očekivani godišnji prinos ovakve elektrane je oko 8400 kWh. Ako konzervativno procenimo da će korisnik upotrebiti 7000 kWh od 8400 koliko elektrana proizvede (ostatak predaje u mrežu bez naknade), možemo reći da je vrednost ušteđene električne energije, sa svim akcizama i porezima, oko 700 evra godišnje. Dakle, potrebno je oko 8 godina da se sistem otplati.

Napomenimo da cena struje u Srbiji u prethodnih dvanaest godina raste za oko 4% više od inflacije. Sa taksama za ugljen dioksid čeka nas novi skok, koji će direktno umanjiti rok otplate za oko 1,5 godinu (očekujući taksu od oko 2,5 dinara po kWh). Zato projekat solarne elektrane može da se isplati i pre nego što očekujete računajući po današnjim cenama. Na našim krovovima će se tokom sledećih godina pojavljivati sve više solarnih panela, i sve više ćemo prelaziti na obnovljive izvore energije. Vama ostavljamo da odlučite da li ćete biti early adopter.

Zahvaljujemo se Nenadu Jovanoviću i firmi Solar Enverde na pomoći pri realizaciji ovog teksta. Solar Enverde vode eksperti sa preko 30 godina iskustva u energetskom menadžmentu i upravljanju kritičnom infrastrukturom, kao i u sertifikovanom vođenju projekata. Uz njih je stalno rastući tim mladih stručnjaka, čime nastaje spoj iskustva i svežih ideja. Deviza kojom se kompanija vodi je da se za bolje sutra rešenja traže već danas. Vizija kompanije je da se uposli svaki potencijal u korišćenju obnovljivih izvora energije, a da posebno energija Sunca, kao izvora života, treba da bude dostupna svakom i da treba da bude iskorišćena na svakom mestu gde postoji potreba.

Heftični bilten

Nikad više ne propustite veliku priču od Sandžaklije. Prijavite se za Heftični Bilten i svake hefte primajte e-mail s pričama koje morate pročitati.

Čitajte više

Slušajte audio izdanja magazina Sandžaklija

HEFTIČNI BILTEN

Prijavom na Heftični Bilten slažete se sa Uslovima korišćenja i politikom privatnosti.